Part Number Hot Search : 
N82S115 SMCJ110C DTA123YE IRK71 R8820 ZD07V5 74HC5 SW60N06T
Product Description
Full Text Search
 

To Download MAX9018AEKA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MAX9018AEKA Rev. A
RELIABILITY REPORT FOR MAX9018AEKA PLASTIC ENCAPSULATED DEVICES
September 22, 2003
MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR. SUNNYVALE, CA 94086
Written by
Reviewed by
Jim Pedicord Quality Assurance Reliability Lab Manager
Bryan J. Preeshl Quality Assurance Executive Director
Conclusion The MAX9018 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. Table of Contents I. ........Device Description II. ........Manufacturing Information III. .......Packaging Information V. ........Quality Assurance Information VI. .......Reliability Evaluation IV. .......Die Information .....Attachments
I. Device Description A. General The dual MAX9018 nanopower comparator in a space-saving SOT23 packages features Beyond-the-RailsTM inputs and is guaranteed to operate down to 1.8V. The A-grade packages feature an on-board 1.236V 1% reference. An ultra-low supply current of 1.2A makes the MAX9018 comparator ideal for all 2-cell battery monitoring/management applications. The unique design of the MAX9018 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9018 has an open-drain output stage that makes them suitable for mixed-voltage system design. The device is available in the ultra-small 8-pin SOT23 package. B. Absolute Maximum Ratings Item Supply Voltage (VCC to VEE) IN+, IN-, INA+, INB+, INA-, INB-, REF/INA-, REF Output Voltage (OUT_) Output Current (REF, OUT_, REF/INA-) Output Short-Circuit Duration (REF, OUT_, REF/INA-) Operating Temperature Range Storage Temperature Range Junction Temperature Lead Temperature (soldering, 10s) Continuous Power Dissipation (TA = +70C) 8-Pin SOT23 Derates above +70C 8-Pin SOT23
Rating 6V (VEE - 0.3V) to (VCC + 0.3V) (VEE - 0.3V) to +6V 50mA 10s -40C to +85C -65C to +150C +150C +300C 727Mw 9.1mW/C
II. Manufacturing Information A. Description/Function: B. Process: C. Number of Device Transistors: D. Fabrication Location: E. Assembly Location: F. Date of Initial Production: SOT23, Dual, Precision, 1.8V, Nanopower Comparators With Reference B8 (Standard 0.8 micron silicon gate CMOS) 349 California, USA Malaysia or Thailand July, 2003
III. Packaging Information A. Package Type: B. Lead Frame: C. Lead Finish: D. Die Attach: E. Bondwire: F. Mold Material: G. Assembly Diagram: H. Flammability Rating: I. Classification of Moisture Sensitivity per JEDEC standard JESD22-112: 8-Pin SOT23 Copper Solder Plate Non-Conductive Epoxy Gold (1.0 mil dia.) Epoxy with silica filler # 05-9000-0428 Class UL94-V0
Level 1
IV. Die Information A. Dimensions: B. Passivation: C. Interconnect: D. Backside Metallization: E. Minimum Metal Width: F. Minimum Metal Spacing: G. Bondpad Dimensions: H. Isolation Dielectric: I. Die Separation Method: 24 x 80 mils Si3N4/SiO2 (Silicon nitride/ Silicon dioxide) Aluminum/Si (Si = 1%) None 0.8 microns (as drawn) 0.8 microns (as drawn) 5 mil. Sq. SiO2 Wafer Saw
V. Quality Assurance Information A. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations) Bryan Preeshl (Executive Director) Kenneth Huening (Vice President) 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
B. Outgoing Inspection Level:
C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D VI. Reliability Evaluation A. Accelerated Life Test B. The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows: = 1 = MTTF 1.83 192 x 4389 x 48 x 2 (Chi square value for MTTF upper limit)
Temperature Acceleration factor assuming an activation energy of 0.8eV = 22.62 x 10-9 = 22.62 F.I.T. (60% confidence level @ 25C)
This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-6200) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M). B. Moisture Resistance Tests Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85C/85%RH testing is done per generic device/package family once a quarter. C. E.S.D. and Latch-Up Testing The CM90-1 die type has been found to have all pins able to withstand a transient pulse of 1000V, per MilStd-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of 250mA.
Table 1 Reliability Evaluation Test Results MAX9018AEKA TEST ITEM TEST CONDITION FAILURE IDENTIFICATION SAMPLE SIZE NUMBER OF FAILURES
PACKAGE
Static Life Test (Note 1) Ta = 135C Biased Time = 192 hrs. Moisture Testing (Note 2) Pressure Pot Ta = 121C P = 15 psi. RH= 100% Time = 168hrs. Ta = 85C RH = 85% Biased Time = 1000hrs.
DC Parameters & functionality
48
0
DC Parameters & functionality
SOT23
77
0
85/85
DC Parameters & functionality
77
0
Mechanical Stress (Note 2) Temperature Cycle -65C/150C 1000 Cycles Method 1010 DC Parameters & functionality 77 0
Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data
Attachment #1 TABLE II. Pin combination to be tested. 1/ 2/
Terminal A (Each pin individually connected to terminal A with the other floating) 1. 2. All pins except VPS1 3/ All input and output pins
Terminal B (The common combination of all like-named pins connected to terminal B) All VPS1 pins All other input-output pins
1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where VPS1 is VDD, VCC, VSS, VBB, GND, +VS, -VS, VREF, etc). 3.4 a. b. Pin combinations to be tested. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V , or V SS1 SS2 or V SS3 or V CC1 , or V CC2 ) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.
c.
TERMINAL C
R1 S1 R2
TERMINAL A REGULATED HIGH VOLTAGE SUPPLY
S2 C1
DUT SOCKET
SHORT CURRENT PROBE (NOTE 6)
TERMINAL B
R = 1.5k C = 100pf
TERMINAL D Mil Std 883D Method 3015.7 Notice 8
ONCE PER SOCKET
ONCE PER BOARD
1K 1 OUTA 2 3 24 MEG INA INA V+ OUTB INBINB+ 8 7 6 5 1 MEG
+5V
4 GND
DEVICE: MAX9017 PACKAGE: 8-SOT23 MAX. EXPECTED CURRENT: 5uA
DRAWN BY: JIM CITTADINO
DOCUMENT I.D. 06-6200
REVISION A
MAXIM
TITLE: BI
Circuit (MAX9017) CM90Z
PAGE
2


▲Up To Search▲   

 
Price & Availability of MAX9018AEKA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X